به گزارش خبرگزاری صدا و سیما، پژوهش جدیدی که در دانشگاه نورثوسترن صورت گرفته، از فناوری یادگیری ماشینی برای شناسایی الگوهای گفتار در کودکان مبتلا به اوتیسم استفاده کند. نتیجه این پژوهش حاکی از آن بود که بررسی ویژگیهای گفتاری ممکن است روش مفیدی برای تشخیص دادن این بیماری باشد.
نتایج حاصل از این پژوهش میتواند به دانشمندان کمک کند تا بین عوامل ژنتیکی و محیطی که تواناییهای ارتباطی افراد مبتلا به اوتیسم را شکل میدهند، تمایز قائل شوند. همچنین، این شیوه کمک میکند تا درباره منشاء این بیماری اطالعات بیشتری کسب و روش های دروانی جدیدی را ارائه کرد.
به طور کل، کودکان مبتلا به اوتیسم، اغلب آهستهتر از کودکان معمولی صحبت میکنند و تفاوتهایی را در زیر و بم، آهنگ و ریتم صحبت از خود نشان میدهند. با وجود این، توصیف این تفاوتها همیشه به طور شگفتانگیزی دشوار بوده و منشأ آنها برای دههها نامشخص مانده است.
حال محققان با موفقیت از یادگیری ماشینی برای شناسایی تفاوتهای گفتاری مرتبط با اوتیسم استفاده کردهاند.
دادههای مورد استفاده برای آموزش این الگوریتم، با ضبط صدای جوانان انگلیسیزبان و کانتونیزبان به دست آمد که به اوتیسم مبتلا نبودند و روایت خود را از داستانی بیان میکردند که در یک کتاب تصویری کودکانه آمده بود.
به گفته یکی از محققان این پروژه، استفاده از یادگیری ماشینی برای شناسایی عناصر کلیدی گفتار که پیشبینیکننده اوتیسم هستند، گامی رو به جلو برای پژوهشگرانی است که به دلیل سوگیری زبان انگلیسی در تحقیقات اوتیسم و ذهنیت انسانها در طبقهبندی تفاوتهای گفتاری بین افراد مبتلا به اوتیسم و افراد بدون آن، محدود شدهاند.
این محقق افزود: ما با استفاده از این روش توانستیم ویژگیهای گفتاری را شناسایی کنیم که میتوانند به پیشبینی اوتیسم کمک کنند. برجستهترین مورد از این ویژگیها، ریتم گفتار است. ما امیدواریم که این پژوهش بتواند پایهای برای پژوهشهای آینده در مورد اوتیسم باشد که از یادگیری ماشینی استفاده میکنند.
پژوهشگران میگویند که نتایج این پژوهش در نهایت میتوانند تلاشهایی را برای شناسایی و درک نقش ژنهای خاص و مکانیسمهای پردازش مغز شکل دهند که در حساسیت ژنتیکی نسبت به اوتیسم دخیل هستند. هدف آنها در نهایت، ایجاد تصویر جامعتری از عواملی است که در افراد مبتلا به تفاوتهای گفتاری اوتیسم وجود دارند.